
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         1 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

VHDL Implementation of Interval Arithmetic 
Algorithms for Single Precision Floating Point 

Numbers  
Sunita.S.Malaj, S.B.Patil, Bhagappa.R.Umarane 

 
 

Abstract— This paper proposes a new approach where the design and implementation of single precision (32bit) Interval Arithmetic Adder/subtractor 
unit is carried using VHDL for computing interval arithmetic operations & functions suited for hardware implementation. The algorithms are coded in 
VHDL & validated through extensive simulation .This VHDL code is then synthesized by synopsys tool to generate the gate level net list that can be 
implemented on the FPGA using Xilinx. This paper shows that interval arithmetic can be efficiently implemented in terms of performance and cost. 

 
 

 Index Terms—   Algorithm, Adder/Subtractor, Interval Arithmetic, Single Precision IEEE 754 standard, Simulation, 
                               Special cases, 

  

——————————      —————————— 

1 INTRODUCTION                                                                     
he Interval arithmetic represents number in intervals. In-
terval arithmetic provides an efficient method for moni-
toring and controlling errors in numerical calculations and 

can be used to solve problems that cannot be efficiently solved 
with floating-point arithmetic. However, existing software 
packages for interval arithmetic are often too slow for numeri-
cally intensive calculations. While conventional floating point 
arithmetic is provided by fast hardware, interval arithmetic is 
simulated with software routines based on integer arithmetic. 
Therefore, the hardware design for interval arithmetic can 
provide a significant performance improvement over software 
implementations of interval arithmetic. Physical measure-
ments often result in quantitization (errors and uncertainty, 
which are difficult to represent using traditional fixed or float-
ing point arithmetic. Interval arithmetic overcomes this diffi-
culty by providing the ability to represent ranges of numbers 
[22]. For example, if a measurement is known to be greater 
than or equal to 1.3567 and less than or equal to 1.3568, it can 
be represented by the interval [1.3567, 1.3568]. Interval arith-
metic also provides arithmetic operations and mathematical 
functions on interval data. When performing interval arithme-
tic operations and mathematical functions, the resulting inter-
vals are generated, such that they are guaranteed to contain 
the correct result.. For example,[1.23, 1.24] + [3.45, 3.46] = [4.68, 
4.70]This paper presents the design of a interval ad-
der/subtractor. This adder/subtractor requires only slightly 
more area than a conventional floating point adder/subtractor 
and provides a significant performance improvement over 
software implementations of interval addi-
tion/subtractor.Numerical errors in floating point (FP) compu-
tations can lead to inaccurate results, which often go un-
detected [l]. Interval arithmetic numbers are actually an or-
dered pair of real numbers representing the lower & upper 
bound of the parameter range [14].   Interval   arithmetic   pro-

vides     an efficient   method    for monitoring and controlling     
these errors by producing two values for each result [2]. These 
two values correspond to the lower and upper endpoints of an 
interval which contains the true result. The difference between 
the upper and lower endpoints defines the width of an inter-
val indicating the accuracy of the result. If either interval end-
point is not representable then the interval is Outward round-
ed. That is, the upper and lower endpoints are rounded to-
wards plus and minus infinity respectively, so that the final 
interval is guaranteed to contain the true result [15]. Although 
naive use of interval arithmetic may result in wide intervals, 
many interval algorithms have been designed that produce 
narrow intervals [3].Furthermore, since intend arithmetic pro-
vides a lower and upper bound for each result, it can be used 
to solve problems that cannot be efficiently solved using tradi-
tional floating-point arithmetic [3]. This approach offers the 
performance benefits of dedicated interval hardware with only 
a marginal increase in area. It also lets interval hardware take 
advantage of advances in floating-point hardware and VLSI 
technology, and eliminates the overhead of transferring data 
between the main processor and an interval coprocessor. This 
paper presents the study and design of a combined interval 
adder/subtractor that is constructed by adding a small amount 
of hardware to a conventional floating-point adder/subtractor 
[12, 14]. This approach offers the benefit of having a functional  
unit that performs interval and floating-point addi-
tion/subtraction, but requires less additional hardware. This 
paper is organized as follows. Section 2 presents the important 
aspects of single precision. Section 3 presents the background 
information of Interval Arithmetic. Section 4 presents the pro-
posed combined Adder/Subtractor. Section 5 gives results of 
proposed interval adder/subtractor. Finally, Section 6 presents 
conclusions.  
 

T



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         2 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

2.  SINGLE PRECISION IEEE 754 FORMAT 
 
The single precision IEEE 754 format is as follows: 
 
 

 
 
 
      
 
 
 
 
 

 Certain values are used for special number  representation 
[12] 
If e=255 & f ≠ 0, represents a not a number value (Nan), re-
gardless of s. 
If e=255 & f=0, represents a infinity (±∞), depending of s. 
If e=0 & f = 0 represents a zero .Note that result depends on S. 
If e=0 & f≠0, it is a denormal value. 
If 0<e<255, it is a normal value. 
 
3. INTERVAL ARITHMETIC 
 
In Interval arithmetic, each quantity is represented by an in-
terval X = [xl, xu

u
], the exact result is said to be contained with-

in this interval such that xl≥x≥xu
u
.Each interval can be operat-

ed in such a way to contain the value of the quantity it repre-
sents. The precise definition of an interval is within an interval 
model which is stated as follows [6]: [xl

l
, xu] ={x€ℜ:x

l
≥x≥x

u
}, 

where the lower bound of the interval, x
l 
is in ƒ U {- ∞}, and the 

upper bound of interval, x
u 

is in ƒ U {+∞}. For every operation   
on real numbers, the interval arithmetic model defines a corre-
sponding interval extension. This operation returns some in-
terval, preferably the smallest one. For elementary operations 
such as addition and subtraction, implementing these interval 
extensions is generally straight-forward. However, for certain 
operations, determining the exact minimum and maximum 
may be very difficult. In such cases, it is acceptable to return 
any computable interval that contains the theoretical range of 
the function not necessarily the smallest one. Computations 
that involve interval arithmetic pose challenging problems for 
implementation on digital computers. Interval arithmetic was 
originall due to inexact inputs. Because of its usefulness in 
monitoring numerical error, interval arithmetic has been ap-
plied to several problems including global optimization, func-
tion evaluation, differential equations, finding roots of poly-
nomials, and solving systems of linear equations [18]. Interval 
arithmetic produces two values for each result. The two values 
correspond to the lower and upper endpoints of an interval, 
such that the true result is guaranteed to lie on this interval. 
For example, if the interval result of a computation is X = [xl 
xu], where l and u, are the lower and upper endpoints of the 
interval, respectively, then the true result xtrue must lie be-
tween xl and xu. The width of an interval X is defined as w (X) 
= Xu - Xl. Interval arithmetic specifies how to perform arith-
metic operations and mathematical functions on intervals. 

When performing interval arithmetic   on computers, each 
interval endpoint is typically represented using a single float-
ing point number. This is referred to as standard interval 
arithmetic. Interval Arithmetic takes into consideration the 
uncertainty of all the parameters, treating them as interval 
numbers whose ranges contain the uncertainties in those pa-
rameters.. The resulting computations, calculated using Inter-
val Arithmetic would carry the uncertainties associated with 
the data throughout the analysis. Sensitivity analysis is per-
formed using Interval Arithmetic by assigning bounds to 
some or all the input parameters and observing the effects 
on the final interval outcome that will contain all possible 
solutions due to the variations in input parameters [19]. If 
the endpoints of a computed interval are not represent 
able, the interval is outward rounded (i.e., the lower end-
point is rounded toward negative infinity and the upper 
endpoint is rounded toward positive infinity). This out-
ward rounding causes a widening of the resulting interval. 
Interval Arithmetic [19, 20,  21] originates from the recogni-
tion that frequently there is uncertainty associated with the 
parameters used in a computation. This form of mathematics 
uses interval "numbers", which are actually an ordered pair of 
real numbers representing the lower and upper bound of the 
parameter range. For example, if we know that r is between 3 
and 4 hours, the corresponding interval number would be 
written as r = [3,4] hours. 
Interval arithmetic is built upon a basic set of axioms. If we 
have two interval numbers X= [a, b] and Y=[c, d], with a b and 
c d then: 

X +Y= [a, b] + [c, d] = [a+c, b+d] 
X-Y= [a, b] + (-[c, d]) = [a-d, b-c] 
X*Y=[min{ac,ad,bc,bd), max {ac,ad,bc,bd)] 
X/Y = [a, b]/ [c, d] = [a, b]*[l/d,l/c],O € [c,d] 

Due to domain violations and overflow, an implementation 
may differ from computer to computer. Recent research into 
the development of supporting interval arithmetic in the 
Fortran 77 and Fortran 90 [7] compilers has led to the for-
mation of the Interval Arithmetic Specification (IAS) [8]. This 
document originally based on work by [9], provides a specifi-
cation for interval data types; interval constants interval 
arithmetic operations, interval relational, interval specific 
functions, interval versions of mathematical functions, and 
I/O.Interval adder/subtractor are more complicated than float-
ing point adder/subtractor, because an interval defines a range 
of values. For this paper only interval adder/subtractor is pro-
posed. Table 1 shows the operations necessary for interval ad-
der/subtractor. 
4. COMBINED INTERVAL ADDER/SUBTRACTOR 
The combined interval adder/subtractor handles normalized 
numbers in the IEEE-754 format. The   design for the interval 
adder/subtractor is based on the design of floating point ad-
der/subtractor.  

Sign Exponent Mantissa(F) 

 
Bit 31 

 
Bit  30-23 

 
Bit 0-22 



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         3 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

32 32 32 32 

32 32

32 32 

Addition: 
      Z = X + Y = [xl + yl, xu + yu] 
For e.g.: 
                [4.2, 4.4] + [3.4, 3.5] = [7.6, 7.9] 

Subtraction:  
 Z = X − Y = [xl − yu, xu − yl] 
For e.g.: 
          [4.2, 4.4] − [3.4, 3.5] = [0.7, l.0] 

 
Table 1.  Operations  For Interval  Adder/Sub Unit 

 

Fig 1.Interval Adder/Subtractor unit 
With advances in VLSI technology, it becomes possible for 
data paths to have more than one functional unit. Therefore, 
interval hardware which has been previously proposed as a 
serial implementation can also be implemented in a parallel 
implementation. The interval adder/subtractor unit is shown 
in "Figure1. Interval adder/subtractor unit”. The parallel unit 
does not require any additional logic for selecting the end-
points. For interval instructions with two input stored in one 
register and the upper end point is stored in another register. 
All input registers, XL, XU, YL and YU, are only used for interval 
instructions that use two intervals as inputs. In this case, it is 
assumed that the lower end point of the second interval is in 
the YL register and the upper end point of the second input 
operand is in the Yu.register, as inputs. In this case, it is as-
sumed that the lower end point of the first interval is in the XL 

register and the upper end point of the first input operand is 
in the XU  register this unit makes use of two multiplexers & 

one floating point adder/subtractor unit. The four 32 bits sin-
gle precision floating point numbers are applied as inputs to 
each of the multiplexers MUX 1 & MUX2 respectively& one 
select line signal sel as”0” & add/sub signal as “0” .Mux1 se-
lects the 32 bit single precision IEEE 754 floating point number 
xl and Mux2 selects the 32 bit Single precision IEEE 754 float-
ing point number yl. These two 32 bit single precision IEEE 
754 floating point numbers are fed to 32 bit floating point ad-
der/sub unit, which adds these two numbers and stores the 
lower end point result (xl +yl) in Zl register. Select line (sel) 
now changes to”1”. The module consisting of MUX1, MUX2 
and 32 bit floating point adder are called once again to per-
form the upper end result. The inputs xu and yu are selected 
from Mux1 and Mux2 respectively and given to the 32 bit 
floating point adder unit.The upper end point result (xu + yu) 
is stored in Zu register. The floating point is designed accord-
ing to the design of floating point adder  
/subtractor [12].The outputs are taken as zl & zu. 
 
The Flow is as follows: 
Step [1]: Read the two 32 bit single precision IEEE 754 num-
bers. 
Step [2]: Mantissa, exponent and sign separator: The two, 32 
bit single precision IEEE 754 numbers are given as inputs to 
separate the mantissa designated as ’f ’, the first 23 bits (bit 0 
to bit 22), the exponents designated as ’e’, the next 8 bits (bit 23 
to bit 30) and the last bit (bit 31) as sign bit . 
Step [3]: Mantissa Swapping (including the   hidden bit). 
The separated exponents are compared using a comparator 
which compares the exponents for less then, greater then and 
equal to. If the first exponent is less then the second then the 
respective mantissas are swapped. If the first exponent is 
greater then the second or equal the mantissas are not 
swapped. 
Step [4]: Exponent difference 
 Take exponent a and exponent b. Use twos complement 
method to obtain the difference of the two exponents.The 
mantissa whose exponent is smaller is shifted right by the val-
ue equal to the difference of the two exponents. 
Step [5]: Sign comparator 
The signs of both the 32 bit single precision IEEE 754 number 
are compared using comparator to decide whether the two 
numbers are to be subtracted or added  If both sign bit are 
different shifted mantissa is complemented (two complement) 
and added to the first mantissa. If both the sign bits are same 
then the shifted mantissa is added with the first mantissa. The 
added result is designated a ’mantissa sum’. 
Step [6]: Negative representation of the mantissa sum.   
• Both the 32 bit single precision IEEE 754 number has differ-
ent signs 



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         4 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

•The most significant bit of mantissa sum is ’1’ 
• If there is no carry in step 5. 
 If the mantissa sum is positive retain mantissa sum. 
Step [7]: Normalization 
 Mantissa sum is normalized. 
 Exponent is obtained 
Step [8]: Resultant sign the sign of the complete result is equal 
to the sign of the larger 32bit single  
Precision IEEE 754 number. 
Step [9] Concatenation: 
 The complete result is obtained by concatenating sign, expo-
nent and mantissa sum. 
Addition is a complex operation because depending on the 
signs of the operands, it may actually be a subtraction. Since 
floating point numbers are coded as “sign/magnitude” revers-
ing the sign –bit inverses the sign. Consequently the same op-
erator performs as well addition or subtraction for floating 
point according to two operand’s signs [13]. For subtraction 
add/sub signal is made high in case of interval arithmetic 
where the subtraction operation of interval numbers is per-
formed. 
 
5.  RESULTS 
5.1. For Interval Arithmetic adder/subtractor      
 Simulation Results for Addition : 

 
 
Simulation Results for Subtraction 

 
 
 
 
REFERENCES 
[1] D. Goldberg, "What Every Computer Scientist Should 
Know About Floating-point Arithmetic, "ACM Computing Sur-

veys, vol. 23, pp. 5-48, and 1991 
[2] R. E. Moore, Reliability in Computing: The Role of Interval 
Methods in Scientific Computations, Academic Press, 1988.  
[3] R. B. Kearfott and V. Kreinovich, Eds., Applications of Inter-
val Computations, Kluwer Academic Publishers, 1996.  
[4] J. E. Stine, Design issues for accurate and reliable arithmetic, 
Ph.D. thesis, Lehigh University, 2000 
[5] J. E. Stine and M. J. Schulte, "A two's complement/floating-
point comparator in Complementary Pass Logic," in Conference 
on Custom Integrated Circuits, 2004  
[6] D. Good and R. London, "Computer Interval Arithmetic: 
Definition and Proof of Correct Implementation,” Journal of the 
ACM, vol. 17, no.4, pp. 603-612, October 1970.  
[7] M. J. Schulte, A. Akkas, V. A. Zelov, and J. C. Burley, "Add-
ing interval support to the GNU Fortran compiler," in Ab-
stracts of the International Symposium on Scientific Compu-
ting, Computer Arithmetic, and Validated Numeric (SCAN-
SB), September 1998. 
[8] D. Chiarev and G. W. Walster, ''Interval Arithmetic Specifi-
cation," Tech. Rep.,Sun Microsystems,Inc.,1998,Available at 
http://www.mscs.mu.edu/- globsol/walsterpapers.html/.  
[9] R. B. Kearfott et. al., "A Specific Proposal for Interval 
Arithmetic in FORTRAN," Tech. Rep., University of South-
western Louisiana, 1996.  
[l0] J. L. Hennessy and D. A. Patterson, Computer Architecture a 
Quantitative Approach, Morgan Kaufmann, 1990.  
[11] J. Schulte, K. C. Bickerstaff, and E. E. Swartdander, Jr., 
"Hardware Interval Multipliers,”  
Journal of Theoretical and Applied Informatics, vol. 3, no. 2; 
pp. 73-90, 1996. 
[12] Guillermo Marcus, Patricia Hinojosa, Alfonso Avila  and  
Juan Nolazco-Flores”A Fully synthesizable single precision 
,floating point adder/subtractor & multiplier in VHDL for 
general & educational use” International  Caracas Conference 
on devices circuits and systems” Dominican Republic, Nov.3-
5, 2004  
[13]Dhiraj sangwan & Mahesh k yadav,˝Design & implementa-
tion of adder/subtractor & multiplication units for floating 
point arithmetic˝ International journal of Electronics Engineer-
ing,2(1),2010,pp.197-203. 
[14] Claudio M. Rocco S., Wilhem Klindt˝Distribution systems 
reliability uncertainty evaluation using an interval arithmetic 
approach˝ 
[15]Rajshekhar shettar, DR R.M.Banakar & 
Dr.P.S.V.Natraj˝Implementation of Interval Arithmetic algo-
rithms on FPGAs˝ICCIMA 2007 
[16]Distribution systems reliability uncertainty evaluation us-
ing an interval arithmetic approach.  
[17]R. E. Moore. Interval Analysis. Prentice Hall, 1966. 
[18]R. E. Moore. Reliability in Computing: The Role of Interval 



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         5 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

Methods in Scientific Computations. Academic Press, 1988. 
[19]R.Moore: "Methods and Applications of Interval Analysis", 
SlAM Studies in Applied Mathematics, Philadelphia, 1979 
[20] G.Alefeld., J.Herzberger: "Introduction to Interval Com-
putations", Academic Press, New York, 1983 
[21]A.Neumaier: "Interval Methods for Systems of Equations", 
Cambridge University Press, 1990  
[22] R. E. Moore. Interval Analysis. Prentice Hall, Englewood 
Cliffs, NJ,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Authors Information 
1)Sunita.S.Malaj 
   P.G Final Sem Student 
   D.Y.Patil College of Engg & Tech, 
   Kolhapur 
   ssmalaj@gmail.com 
 
2)S.B.Patil 
   Dept of EC, 
   D.Y.Patil College of Engg & Tech 
   Kolhapur 
   S_b_Patil2000@indiatimes.com 
 
3) Bhagappa.R.Umarane 
   Dept of EC, 
   K.L.E College of Engg & Tech, 
   Chikodi 
   bru1972@rediffmail.com 


